Modeling atmospheric data and identifying dynamics Temporal data-driven modeling of air pollutants

نویسندگان

چکیده

Atmospheric modeling has recently experienced a surge with the advent of deep learning. Most these models, however, predict concentrations pollutants following data-driven approach in which physical laws that govern their behaviors and relationships remain hidden. With aid real-world air quality data collected hourly different stations throughout Madrid, we present an empirical using techniques goals: (1) Find parsimonious systems ordinary differential equations via sparse identification nonlinear dynamics (SINDy) model concentration changes over time; (2) assess performance limitations our models stability analysis; (3) reconstruct time series chemical not measured certain delay coordinate embedding results. Our results show Akaike’s Information Criterion can work well conjunction best subset regression as to find equilibrium between sparsity goodness fit. We also that, due complexity system under study, identifying this longer periods require higher levels filtering smoothing. Stability analysis for reconstructed (ODEs) reveals more than half physically relevant critical points are saddle points, suggesting is unstable even idealized assumption all environmental conditions constant time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Statistical trend analysis and forecast modeling of air pollutants

The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...

متن کامل

Modeling Conflict Dynamics with Spatio-temporal Data

Spend your time even for only few minutes to read a book. Reading a book will never reduce and waste your time to be useless. Reading, for some people become a need that is to do every day such as spending time for eating. Now, what about you? Do you like to read a book? Now, we will show you a new book enPDFd modeling conflict dynamics with spatio temporal data that can be a new way to explore...

متن کامل

application of several data-driven techniques for rainfall-runoff modeling

in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...

متن کامل

The Geometry and Dynamics of Data-Driven Modeling

The fundamental problem in science is that of using measurements and observations to draw conclusions that at rst appear to be hidden from the observer. The task of turning raw measurements into useful conclusions is exactly the task underlying data driven modeling. The full task involves the ability to turn various assumptions into useful constraints which allow the data to be converted into c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cleaner Production

سال: 2022

ISSN: ['0959-6526', '1879-1786']

DOI: https://doi.org/10.1016/j.jclepro.2021.129863